Section 1A ππ and ππ
1. [[EF-1A-1]] Β Show that πΌ+π½ = π½+πΌ for all πΌ,π½ β π. [link](obsidian://open?vault=AxlerChat&file=Exercises%2FAll_Exercises%2F1A-1)
find [GPT-4-Answers-Feb 2024](GPT-4-Answers-Feb%202024.md)
2. [[1A-2]]Β Show that(πΌ+π½)+π = πΌ+(π½+π) for all πΌ,π½,πβπ.
find[[]]
3. [[1A-3]] Β Show that(πΌπ½)π = πΌ(π½π) for all πΌ,π½,π β π.
4. [[1A-4]] Β Show that π(πΌ+π½) = ππΌ+ππ½ for all π,πΌ,π½βπ.
5. [[1A-5]] Β Show that for every πΌβπ, there exists a unique π½βπ such that πΌ+π½ = 0.
6. [[1A-6]] Β Show that for every πΌβπ with πΌ=ΜΈ0, there exists a unique π½βπ such that πΌπ½ = 1.
7. [[1A-7]] Show that β1+β3π 2 is a cube root of 1 (meaning that its cube equals 1).
8. [[1A-8]] Β Find two distinct square roots of π.
9. [[1A-9]] Β Find π₯ β π4 such that (4, β3, 1, 7) + 2π₯ = (5, 9, β6, 8).
10. [[1A-10]] Β Explain why there does not exist π β π such that π(2 β 3π, 5 + 4π, β6 + 7π) = (12 β 5π, 7 + 22π, β32 β 9π).
11. [[1A-11]] Β Show that (π₯+π¦)+π§ = π₯+(π¦+π§) for all π₯,π¦,π§ β π
π.
12. [[1A-12]] Β Show that (ππ)π₯ = π(ππ₯) for all π₯βπ
π and all π,π β π
.
13. [[1A-13]] Β Show that 1π₯=π₯ for all π₯βπ
π.
14. [[1A-14]] Β Show that π(π₯+π¦) = ππ₯+ππ¦ for all π β π
and all π₯,π¦ β π
π.
15. [[1A-15]] Β Show that (π+π)π₯ = ππ₯+ππ₯ for all π,π β π
and all π₯ β π
π.
---
$
\begin{align*}
&\text{Exercises 1A }\\
1. & \text{ Show that } \alpha + \beta = \beta + \alpha \text{ for all } \alpha, \beta \in \mathbb{C}.\quad \text{} \\\\
2. & \text{ Show that } (\alpha + \beta) + \lambda = \alpha + (\beta + \lambda) \text{ for all } \alpha, \beta, \lambda \in \mathbb{C}. \\
3. & \text{ Show that } (\alpha \beta) \lambda = \alpha (\beta \lambda) \text{ for all } \alpha, \beta, \lambda \in \mathbb{C}. \\
4. & \text{ Show that } \lambda (\alpha + \beta) = \lambda \alpha + \lambda \beta \text{ for all } \lambda, \alpha, \beta \in \mathbb{C}. \\
5. & \text{ Show that for every } \alpha \in \mathbb{C}, \text{ there exists a unique } \beta \in \mathbb{C} \text{ such that } \alpha + \beta = 0. \\
6. & \text{ Show that for every } \alpha \in \mathbb{C} \text{ with } \alpha \neq 0, \text{ there exists a unique } \beta \in \mathbb{C} \\
& \text{ such that } \alpha \beta = 1. \\
7. & \text{ Show that } -1 + \frac{\sqrt{3}i}{2} \text{ is a cube root of } 1 \text{ (meaning that its cube equals } 1). \\
8. & \text{ Find two distinct square roots of } i. \\
9. & \text{ Find } x \in \mathbb{R}^4 \text{ such that } (4, -3, 1, 7) + 2x = (5, 9, -6, 8). \\
10. & \text{ Explain why there does not exist } \lambda \in \mathbb{C} \text{ such that } \\
& \lambda(2 - 3i, 5 + 4i, -6 + 7i) = (12 - 5i, 7 + 22i, -32 - 9i). \\
11. & \text{ Show that } (x + y) + z = x + (y + z) \text{ for all } x, y, z \in \mathbb{F}^n. \\
12. & \text{ Show that } (ab)x = a(bx) \text{ for all } x \in \mathbb{F}^n \text{ and all } a, b \in \mathbb{F}. \\
13. & \text{ Show that } 1x = x \text{ for all } x \in \mathbb{F}^n. \\
14. & \text{ Show that } \lambda(x + y) = \lambda x + \lambda y \text{ for all } \lambda \in \mathbb{F} \text{ and all } x, y \in \mathbb{F}^n. \\
15. & \text{ Show that } (a + b)x = ax + bx \text{ for all } a, b \in \mathbb{F} \text{ and all } x \in \mathbb{F}^n.
\end{align*}
$