$ \begin{array}{l} \textbf{Exercises 3E} \\ 1. \text{ Suppose } T \text{ is a function from } V \text{ to } W.\\ \text{ The graph of function } T \text{ is the subset of } V \times W \\ \text{ defined by} \\ \text{graph of } T = {(v,Tv)\in V x W:v \in V}\\\\ \text{ Prove that } T \text{ is a linear map if and only if the graph of } T \\\text{ is a subspace of } V \times W. \\ \text{ Formally, a function } T \text{ from } V \text{ to } W \text{ is a subset } T \text{ of } V \times W \text{ such that for each } v \in V, \\ \text{ there exists exactly one element } (v, w) \in T. \\\\\text{ In other words, formally a function is what is called above its graph.} \\\\ \text{ We do not usually think of functions in this formal manner.}\\\text{ However, if we do become formal, then this exercise could be rephrased as follows:} \\ \text{ Prove that a function } T \text{ from } V \text{ to } W \text{ is a linear map if and only if } T \text{ is a subspace of } V \times W. \\\\ 2. \text{ Suppose that } V_1, \ldots, V_m \text{ are vector spaces such that } V_1 \times \cdots \times V_m \text{ is finite-dimensional.}\\\text{ Prove that } \\V_k \text{ is finite-dimensional for each } k = 1, \ldots, m. \\\\ 3. \text{ Suppose } V_1, \ldots, V_m \text{ are vector spaces. Prove that } \\L(V_1 \times \cdots \times V_m, W) \text{ and } L(V_1, W) \times \cdots \times L(V_m, W) \text{ are isomorphic vector spaces.} \\\\ 4. \text{ Suppose } W_1, \ldots, W_m \text{ are vector spaces. Prove that }\\ L(V, W_1 \times \cdots \times W_m) \text{ and } L(V, W_1) \times \cdots \times L(V, W_m) \text{ are isomorphic vector spaces.} \\\\ 5. \text{ For } m \text{ a positive integer, define } V_m \text{ by } V_m = V \times \cdots \times V \text{ (} m \text{ times)}. \\\text{ Prove that } V_m \text{ and } L(F^m, V) \text{ are isomorphic vector spaces.} \\\\ 6. \text{ Suppose that } v, x \text{ are vectors in } V \text{ and that } U, W \text{ are subspaces of } V \text{ such that } v + U = x + W.\\ \text{ Prove that } U = W. \\ 7. \text{ Let } U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}. \text{ Suppose } A \subseteq \mathbb{R}^3.\\ \text{ Prove that } A \text{ is a translate of } U \text{ if and only if there exists } c \in \mathbb{R} \text{ such that } \\ A = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}. \\\\ 8. (a) \text{ Suppose } T \in L(V, W) \text{ and } c \in W. \text{ Prove that } \{x \in V : T x = c\} \\\text{ is either the empty set or is a translate of null } T. \\\\ (b) \text{ Explain why the set of solutions to a system of linear equations such as 3.27}\\\text{ is either the empty set or is a translate of some subspace of } F^n. \\\\ 9. \text{ Prove that a nonempty subset } A \text{ of } V \text{ is a translate of some subspace of } V \\\text{ if and only if } \lambda v + (1 - \lambda) w \in A \text{ for all } v, w \in A \text{ and all } \lambda \in F. \\ 10. \text{ Suppose } A_1 = v + U_1 \text{ and } A_2 = w + U_2 \text{ for some } v, w \in V \text{ and some subspaces } U_1, U_2 \text{ of } V.\\ \text{ Prove that the intersection } A_1 \cap A_2 \text{ is either a translate of some subspace of } V \text{ or is the empty set.} \\ \text{ graph of } T = \{(v, T v) \in V \times W : v \in V\}. \end{array} $ --- $\begin{array}{l} 104 \text{ Chapter 3 Linear Maps} \\ 11. \text{ Suppose } U = \{(x_1, x_2, \ldots) \in F^\infty : x_k \neq 0 \\\text{ for only finitely many } k\}. \\ (a) \text{ Show that } U \text{ is a subspace of } F^\infty. \\ (b) \text{ Prove that } F^\infty/U \text{ is infinite-dimensional.} \\\\ 12. \text{ Suppose } v_1, \ldots, v_m \in V. \text{ Let } A = \{\lambda_1 v_1 + \cdots + \lambda_m v_m : \lambda_1, \ldots, \lambda_m \in F \text{ and } \lambda_1 + \cdots + \lambda_m = 1\}. \\ (a) \text{ Prove that } A \text{ is a translate of some subspace of } V. \\ (b) \text{ Prove that if } B \text{ is a translate of some subspace of } V \text{ and } \{v_1, \ldots, v_m\} \subseteq B, \\ \text{ then } A \subseteq B. \\ (c) \text{ Prove that } A \text{ is a translate of some subspace of } V \text{ of dimension less than } m. \\\\ 13. \text{ Suppose } U \text{ is a subspace of } V \text{ such that } V/U \\\text{ is finite-dimensional.\\ Prove that } V \text{ is isomorphic to } U \times (V/U). \\\\ 14. \text{ Suppose } U \text{ and } W \text{ are subspaces of } V \text{ and } V = U \oplus W. \text{ Suppose } w_1, \ldots, w_m \text{ is a basis of } W. \\\\ \text{ Prove that } w_1 + U, \ldots, w_m + U \text{ is a basis of } V/U. \\\\ 15. \text{ Suppose } U \text{ is a subspace of } V \text{ and } v_1 + U, \ldots, v_m + U \text{ is a basis of } V/U \text{ and } u_1, \ldots, u_n \\\text{ is a basis of } U. \\ \text{ Prove that } v_1, \ldots, v_m, u_1, \ldots, u_n \text{ is a basis of } V. \\\\ 16. \text{ Suppose } \phi \in L(V, F) \text{ and } \phi \neq 0. \text{ Prove that } \text{dim } V/(\text{null } \phi) = 1. \\\\ 17. \text{ Suppose } U \text{ is a subspace of } V \text{ such that } \text{dim } V/U = 1. \\\text{ Prove that there exists } \phi \in L(V, F) \text{ such that } \text{null } \phi = U. \\\\ 18. \text{ Suppose that } U \text{ is a subspace of } V \text{ such that } V/U \text{ is finite-dimensional.} \\ (a) \text{ Show that if } W \text{ is a finite-dimensional subspace of } V \text{ and } V = U + W, \text{ then } \text{dim } W \geq \text{dim } V/U. \\ (b) \text{ Prove that there exists a finite-dimensional subspace } W\\ \text{ of } V \text{ such that } \text{dim } W = \text{dim } V/U \text{ and } V = U \oplus W. \\\\ 19. \text{ Suppose } T \in L(V, W) \text{ and } U \text{ is a subspace of } V.\\ \text{ Let } \pi \text{ denote the quotient map from } V \text{ onto } V/U. \\\text{ Prove that there exists } S \in L(V/U, W) \text{ such that } T = S \circ \pi \text{ if and only if } U \subseteq \text{null } T. \end{array} $ --- Exercises 3E 1 Suppose ๐‘‡ is a function from ๐‘‰ to ๐‘Š. The graph of ๐‘‡ is the subset of ๐‘‰ร— ๐‘Š defined by Prove that ๐‘‡ is a linear map if and only if the graph of ๐‘‡ is a subspace of ๐‘‰ร—๐‘Š. Formally, a function ๐‘‡ from ๐‘‰ to ๐‘Š is a subset ๐‘‡ of ๐‘‰ร— ๐‘Š such that for each ๐‘ฃ โˆˆ ๐‘‰, there exists exactly one element (๐‘ฃ, ๐‘ค) โˆˆ ๐‘‡. In other words, formally a function is what is called above its graph. We do not usually think of functions in this formal manner. However, if we do become formal, then this exercise could be rephrased as follows: Prove that a function ๐‘‡ from๐‘‰to๐‘Šisalinearmapifandonlyif ๐‘‡isasubspaceof ๐‘‰ร—๐‘Š. 2. 3E-2 ย Suppose that ๐‘‰1, ..., ๐‘‰๐‘š are vector spaces such that ๐‘‰1 ร— โ‹ฏ ร— ๐‘‰๐‘š is finite- dimensional. Prove that ๐‘‰๐‘˜ is finite-dimensional for each ๐‘˜ = 1, ..., ๐‘š. 3. 3E-3 ย Suppose๐‘‰1,...,๐‘‰๐‘šarevectorspaces.ProvethatL(๐‘‰1ร—โ‹ฏร—๐‘‰๐‘š,๐‘Š)and L(๐‘‰1, ๐‘Š) ร— โ‹ฏ ร— L(๐‘‰๐‘š, ๐‘Š) are isomorphic vector spaces. 4. 3E-4 ย Suppose ๐‘Š1, ..., ๐‘Š๐‘š are vector spaces. Prove that L(๐‘‰, ๐‘Š1 ร— โ‹ฏ ร— ๐‘Š๐‘š) and L(๐‘‰, ๐‘Š1) ร— โ‹ฏ ร— L(๐‘‰, ๐‘Š๐‘š) are isomorphic vector spaces. 5. 3E-5 ย For ๐‘š a positive integer, define ๐‘‰๐‘š by ๐‘‰ ๐‘š = ๐‘‰ โŸร— โ‹ฏ ร— ๐‘‰ . ๐‘š times Prove that ๐‘‰๐‘š and L(๐…๐‘š, ๐‘‰) are isomorphic vector spaces. 6. 3E-6 ย Suppose that ๐‘ฃ, ๐‘ฅ are vectors in ๐‘‰ and that ๐‘ˆ, ๐‘Š are subspaces of ๐‘‰ such that ๐‘ฃ + ๐‘ˆ = ๐‘ฅ + ๐‘Š. Prove that ๐‘ˆ = ๐‘Š. 7. 3E-7 ย Let๐‘ˆ={(๐‘ฅ,๐‘ฆ,๐‘ง)โˆˆ๐‘3 โˆถ2๐‘ฅ+3๐‘ฆ+5๐‘ง=0}.Suppose๐ดโІ๐‘3.Provethat ๐ด is a translate of ๐‘ˆ if and only if there exists ๐‘ โˆˆ ๐‘ such that ๐ด = {(๐‘ฅ,๐‘ฆ,๐‘ง) โˆˆ ๐‘3 โˆถ2๐‘ฅ+3๐‘ฆ+5๐‘ง = ๐‘}. 8. 3E-8 ย (a) Suppose๐‘‡ โˆˆ L(๐‘‰,๐‘Š)and๐‘ โˆˆ ๐‘Š. Provethat{๐‘ฅ โˆˆ ๐‘‰ โˆถ๐‘‡๐‘ฅ = ๐‘}is either the empty set or is a translate of null ๐‘‡. (b) Explainwhythesetofsolutionstoasystemoflinearequationssuchas 3.27 is either the empty set or is a translate of some subspace of ๐…๐‘›. 9. 3E-9 ย Prove that a nonempty subset ๐ด of ๐‘‰ is a translate of some subspace of ๐‘‰ if and only if ๐œ†๐‘ฃ + (1 โˆ’ ๐œ†)๐‘ค โˆˆ ๐ด for all ๐‘ฃ, ๐‘ค โˆˆ ๐ด and all ๐œ† โˆˆ ๐…. 10. 3E-10 ย Suppose๐ด1 = ๐‘ฃ+๐‘ˆ1 and๐ด2 = ๐‘ค+๐‘ˆ2 forsome๐‘ฃ,๐‘ค โˆˆ ๐‘‰andsome subspaces ๐‘ˆ1,๐‘ˆ2 of ๐‘‰. Prove that the intersection ๐ด1 โˆฉ ๐ด2 is either a translate of some subspace of ๐‘‰ or is the empty set. graph of ๐‘‡ = {(๐‘ฃ, ๐‘‡๐‘ฃ) โˆˆ ๐‘‰ ร— ๐‘Š โˆถ ๐‘ฃ โˆˆ ๐‘‰}. 104 Chapter 3 Linear Maps 11. 3E-11 ย Suppose๐‘ˆ={(๐‘ฅ1,๐‘ฅ2,...)โˆˆ๐…โˆž โˆถ๐‘ฅ๐‘˜ =ฬธ0foronlyfinitelymany๐‘˜}. (a) Showthat๐‘ˆisasubspaceof๐…โˆž. (b) Prove that ๐…โˆž/๐‘ˆ is infinite-dimensional. 12. 3E-12 ย Suppose ๐‘ฃ1, ..., ๐‘ฃ๐‘š โˆˆ ๐‘‰. Let ๐ด={๐œ†1๐‘ฃ1+โ‹ฏ+๐œ†๐‘š๐‘ฃ๐‘š โˆถ๐œ†1,...,๐œ†๐‘š โˆˆ๐…and๐œ†1+โ‹ฏ+๐œ†๐‘š =1}. 1. (a) ย Provethat๐ดisatranslateofsomesubspaceof๐‘‰. 2. (b) ย Provethatif๐ตisatranslateofsomesubspaceof๐‘‰and{๐‘ฃ1,...,๐‘ฃ๐‘š}โІ๐ต, then ๐ด โІ ๐ต. 3. (c) ย Prove that ๐ด is a translate of some subspace of ๐‘‰ of dimension less than ๐‘š. 13. 3E-13 ย Suppose ๐‘ˆ is a subspace of ๐‘‰ such that ๐‘‰/๐‘ˆ is finite-dimensional. Prove that ๐‘‰ is isomorphic to ๐‘ˆ ร— (๐‘‰/๐‘ˆ). 14. 3E-14 ย Suppose๐‘ˆand๐‘Šaresubspacesof๐‘‰and๐‘‰=๐‘ˆโŠ•๐‘Š.Suppose๐‘ค1,...,๐‘ค๐‘š isabasisof๐‘Š. Provethat๐‘ค1 +๐‘ˆ,...,๐‘ค๐‘š +๐‘ˆisabasisof๐‘‰/๐‘ˆ. 15. 3E-15 ย Suppose๐‘ˆisasubspaceof๐‘‰and๐‘ฃ1+๐‘ˆ,...,๐‘ฃ๐‘š+๐‘ˆisabasisof๐‘‰/๐‘ˆand ๐‘ข1,...,๐‘ข๐‘› is a basis of ๐‘ˆ. Prove that ๐‘ฃ1,...,๐‘ฃ๐‘š,๐‘ข1,...,๐‘ข๐‘› is a basis of ๐‘‰. 16. 3E-16 ย Suppose๐œ‘โˆˆL(๐‘‰,๐…)and๐œ‘=ฬธ0.Provethatdim๐‘‰/(null๐œ‘)=1. 17. 3E-17 ย Suppose ๐‘ˆ is a subspace of ๐‘‰ such that dim ๐‘‰/๐‘ˆ = 1. Prove that there exists ๐œ‘ โˆˆ L(๐‘‰,๐…) such that null๐œ‘ = ๐‘ˆ. 18. 3E-18 ย Suppose that ๐‘ˆ is a subspace of ๐‘‰ such that ๐‘‰/๐‘ˆ is finite-dimensional. 1. (a) ย Showthatif๐‘Šisafinite-dimensionalsubspaceof๐‘‰and๐‘‰=๐‘ˆ+๐‘Š, then dim ๐‘Š โ‰ฅ dim ๐‘‰/๐‘ˆ. 2. (b) ย Provethatthereexistsafinite-dimensionalsubspace๐‘Šof๐‘‰suchthat dim๐‘Š =dim๐‘‰/๐‘ˆand๐‘‰ =๐‘ˆโŠ•๐‘Š. 19. 3E-19 ย Suppose ๐‘‡ โˆˆ L(๐‘‰, ๐‘Š) and ๐‘ˆ is a subspace of ๐‘‰. Let ๐œ‹ denote the quotient map from ๐‘‰ onto ๐‘‰/๐‘ˆ. Prove that there exists ๐‘† โˆˆ L(๐‘‰/๐‘ˆ, ๐‘Š) such that ๐‘‡ = ๐‘† โˆ˜ ๐œ‹ if and only if ๐‘ˆ โІ null ๐‘‡.