Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps.
Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.
Note that
$\begin{align*}
(ST)(T^{-1}S^{-1}) &= S(TT^{-1})S^{-1} = SIS^{-1} = SS^{-1} = I \\
(T^{-1}S^{-1})(ST) &= T^{-1}(S^{-1}S)T = T^{-1}IT = T^{-1}T = I.
\end{align*}$
Thus $ST$ is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.
---
$\textbf{Exercise 2.}$ Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.
$\textbf{Solution 2.}$ Note that
$\begin{align*}
(ST)(T^{-1}S^{-1}) &= S(TT^{-1})S^{-1} = SIS^{-1} = SS^{-1} = I \\
(T^{-1}S^{-1})(ST) &= T^{-1}(S^{-1}S)T = T^{-1}IT = T^{-1}T = I.
\end{align*}$
Thus $ST$ is invertible and $(ST)^{-1} = T^{-1}S^{-1}$.
---
![[sol-5.pdf#page=2]]