![[sol-5.pdf#page=28]]
---
$\textbf{Exercise 14.}$ Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by
$\begin{equation*}
T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
\end{equation*}$
Suppose $\varphi_1, \varphi_2$ denotes the dual basis of the standard basis of $\mathbb{R}^2$ and $\psi_1, \psi_2, \psi_3$ denotes the dual basis of the standard basis of $\mathbb{R}^3$.
(a) Describe the linear functionals $T^*(\varphi_1)$ and $T^*(\varphi_2)$.
(b) Write $T^*(\varphi_1)$ and $T^*(\varphi_2)$ as linear combinations of $\psi_1, \psi_2, \psi_3$.
$\textbf{Solution 14.}$
(a) Note that $\varphi_1(a, b) = a$ and $\varphi_2(a, b) = b$ for all $(a, b) \in \mathbb{R}^2$.
Recall that $T^*(\varphi_1) = \varphi_1 \circ T$ and $T^*(\varphi_2) = \varphi_2 \circ T$. Thus
$\begin{equation*}
(T^*(\varphi_1))(x, y, z) = 4x + 5y + 6z
\end{equation*}$
and
$\begin{equation*}
(T^*(\varphi_2))(x, y, z) = 7x + 8y + 9z.
\end{equation*}$
(b) We have $\psi_1(x, y, z) = x$, $\psi_2(x, y, z) = y$, and $\psi_3(x, y, z) = z$. Using (a), we thus see that
$\begin{align*}
T^*(\varphi_1) &= 4\psi_1 + 5\psi_2 + 6\psi_3 \\
T^*(\varphi_2) &= 7\psi_1 + 8\psi_2 + 9\psi_3.
\end{align*}$
---
$\textbf{Exercise 14.}$ Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by
$\begin{equation*}
T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
\end{equation*}$
Suppose $\varphi_1, \varphi_2$ denotes the dual basis of the standard basis of $\mathbb{R}^2$ and $\psi_1, \psi_2, \psi_3$ denotes the dual basis of the standard basis of $\mathbb{R}^3$.
(a) Describe the linear functionals $T^*(\varphi_1)$ and $T^*(\varphi_2)$.
(b) Write $T^*(\varphi_1)$ and $T^*(\varphi_2)$ as linear combinations of $\psi_1, \psi_2, \psi_3$.
$\textbf{Solution 14.}$
(a) Note that $\varphi_1(a, b) = a$ and $\varphi_2(a, b) = b$ for all $(a, b) \in \mathbb{R}^2$.
Recall that $T^*(\varphi_1) = \varphi_1 \circ T$ and $T^*(\varphi_2) = \varphi_2 \circ T$. Thus
$\begin{equation*}
(T^*(\varphi_1))(x, y, z) = 4x + 5y + 6z
\end{equation*}$
and
$\begin{equation*}
(T^*(\varphi_2))(x, y, z) = 7x + 8y + 9z.
\end{equation*}$
(b) We have $\psi_1(x, y, z) = x$, $\psi_2(x, y, z) = y$, and $\psi_3(x, y, z) = z$. Using (a), we thus see that
$\begin{align*}
T^*(\varphi_1) &= 4\psi_1 + 5\psi_2 + 6\psi_3 \\
T^*(\varphi_2) &= 7\psi_1 + 8\psi_2 + 9\psi_3.
\end{align*}$
$\textit{Commentary:}$ This exercise is a concrete example of how the dual map acts on specific linear functionals.
Given a linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$, the dual map $T^*$ sends linear functionals on $\mathbb{R}^2$ to linear functionals on $\mathbb{R}^3$.
Part (a) asks to describe these functionals explicitly, which is done by composing the original functionals with $T$.
Part (b) then asks to express these functionals in terms of the dual basis of $\mathbb{R}^3$, which is a straightforward calculation using the results of part (a).
This exercise helps to develop a concrete understanding of the dual map and its relationship to bases and coordinate representations.
$\textit{Example:}$ Let $\varphi = (1, 2) \in (\mathbb{R}^2)^*$, so $\varphi(a, b) = a + 2b$. Then
$\begin{align*}
T^*(\varphi)(x, y, z) &= \varphi(T(x, y, z)) \\
&= \varphi(4x + 5y + 6z, 7x + 8y + 9z) \\
&= (4x + 5y + 6z) + 2(7x + 8y + 9z) \\
&= 18x + 21y + 24z \\
&= 18\psi_1(x, y, z) + 21\psi_2(x, y, z) + 24\psi_3(x, y, z).
\end{align*}$
Thus $T^*(\varphi) = 18\psi_1 + 21\psi_2 + 24\psi_3$.