$\textbf{Exercise 3.}$ Suppose $V$ is a complex vector space and $\varphi \in V^*$. Define $\sigma: V \to \mathbb{R}$ by $\sigma(v) = \operatorname{Re} \varphi(v)$ for each $v \in V$. Show that
$\begin{equation*}
\varphi(v) = \sigma(v) - i\sigma(iv)
\end{equation*}$
for all $v \in V$.
$\textbf{Solution 3.}$ If $v \in V$, then
$\begin{align*}
\operatorname{Im} \varphi(v) &= - \operatorname{Re}(i\varphi(v)) \\
&= - \operatorname{Re} \varphi(iv) \\
&= -\sigma(iv).
\end{align*}$
Thus $\varphi(v) = \sigma(v) - i\sigma(iv)$.
---

---
Commentary:
$\textbf{Exercise 3.}$ Suppose $V$ is a complex vector space and $\varphi \in V^*$. Define $\sigma: V \to \mathbb{R}$ by $\sigma(v) = \operatorname{Re} \varphi(v)$ for each $v \in V$. Show that
$\begin{equation*}
\varphi(v) = \sigma(v) - i\sigma(iv)
\end{equation*}$
for all $v \in V$.
$\textbf{Solution 3.}$ If $v \in V$, then
$\begin{align*}
\operatorname{Im} \varphi(v) &= - \operatorname{Re}(i\varphi(v)) \\
&= - \operatorname{Re} \varphi(iv) \\
&= -\sigma(iv).
\end{align*}$
Thus $\varphi(v) = \sigma(v) - i\sigma(iv)$.
$\textit{Commentary:}$ This exercise shows how to recover a complex-linear functional from its real part.
Given a complex vector space $V$ and a complex-linear functional $\varphi$, we can define a real-linear functional $\sigma$ by taking the real part of $\varphi$.
The exercise shows that $\varphi$ can be recovered from $\sigma$ by the formula $\varphi(v) = \sigma(v) - i\sigma(iv)$.
The proof is a simple calculation using the linearity of $\varphi$ and the properties of complex numbers.
This result is useful in the study of complex vector spaces and their duals, as it allows us to reduce some problems about complex-linear functionals to problems about real-linear functionals.
$\textit{Example:}$ Let $V = \mathbb{C}^2$ and define $\varphi: \mathbb{C}^2 \to \mathbb{C}$ by $\varphi(z_1, z_2) = z_1 + iz_2$. The real part of $\varphi$ is the functional $\sigma: \mathbb{C}^2 \to \mathbb{R}$ given by
$\begin{equation*}
\sigma(z_1, z_2) = \operatorname{Re} \varphi(z_1, z_2) = \operatorname{Re}(z_1 + iz_2) = \operatorname{Re} z_1 - \operatorname{Im} z_2.
\end{equation*}$
For any $(z_1, z_2) \in \mathbb{C}^2$, we have
$\begin{align*}
\sigma(z_1, z_2) - i\sigma(i(z_1, z_2)) &= \sigma(z_1, z_2) - i\sigma(iz_1, -z_2) \\
&= (\operatorname{Re} z_1 - \operatorname{Im} z_2) - i(\operatorname{Im} z_1 + \operatorname{Re} z_2) \\
&= \operatorname{Re} z_1 + i\operatorname{Im} z_1 + \operatorname{Re} z_2 + i\operatorname{Im} z_2 \\
&= z_1 + iz_2 \\
&= \varphi(z_1, z_2),
\end{align*}$
as predicted by the theorem.